Natural Variation in the Drosophila melanogaster Clock Gene Period Modulates Splicing of Its 3′-Terminal Intron and Mid-Day Siesta

نویسندگان

  • Kwang Huei Low
  • Wen-Feng Chen
  • Evrim Yildirim
  • Isaac Edery
چکیده

Drosophila melanogaster exhibits circadian (≅24 hr) regulated morning and evening bouts of activity that are separated by a mid-day siesta. Increases in daily ambient temperature are accompanied by a progressively longer mid-day siesta and delayed evening activity. Presumably, this behavioral plasticity reflects an adaptive response that endows D. melanogaster with the ability to temporally optimize daily activity levels over a wide range of physiologically relevant temperatures. For example, the shift in activity towards the cooler nighttime hours on hot days might minimize the risks associated with exposure to mid-day heat, whereas on cold days activity is favored during the warmer daytime hours. These temperature-induced shifts in the distribution of daily activity are partly based on the thermal sensitive splicing of an intron found in the 3' untranslated region (UTR) of the circadian clock gene termed period (per). As temperature decreases, splicing of this 3'-terminal intron (termed dmpi8) is gradually increased, which is causally linked to a shorter mid-day siesta. Herein we identify several natural polymorphisms in the per 3' UTR from wild-caught populations of flies originating along the east coast of the United States. Two non-intronic closely spaced single nucleotide polymorphisms (SNPs) modulate dmpi8 splicing efficiency, with the least efficiently spliced version associated with a longer mid-day siesta, especially at lower temperatures. Although these SNPs modulate the splicing efficiency of dmpi8 they have little to no effect on its thermal responsiveness, consistent with the notion that the suboptimal 5' and 3' splice sites of the dmpi8 intron are the primary cis-acting elements mediating temperature regulation. Our results demonstrate that natural variations in the per gene can modulate the splicing efficiency of the dmpi8 intron and the daily distribution of activity, providing natural examples for the involvement of dmpi8 splicing in the thermal adaptation of behavioral programs in D. melanogaster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Variation in the Splice Site Strength of a Clock Gene and Species-Specific Thermal Adaptation

We show that multiple suboptimal splice sites underlie the thermal-sensitive splicing of the period (per) 3'-terminal intron (dmpi8) from D. melanogaster, enabling this species to prolong its midday "siesta," a mechanism that likely diminishes the deleterious effects of heat during the longer summer days in temperate climates. In D. yakuba and D. santomea, which have a more ancestral distributi...

متن کامل

Thermosensitive splicing of a clock gene and seasonal adaptation.

Similar to many diurnal animals, the daily distribution of activity in Drosophila exhibits a bimodal pattern with clock-controlled morning and evening peaks separated by a midday "siesta." In prior work, we showed that the thermosensitive splicing of a 3'-terminal intron in the RNA product from the Drosophila period (per) gene (dper) is critical for temperature-induced adjustments in the timing...

متن کامل

Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C.

The daily timing of circadian ( congruent with 24-h) controlled activity in many animals exhibits seasonal adjustments, responding to changes in photoperiod (day length) and temperature. In Drosophila melanogaster, splicing of an intron in the 3' untranslated region of the period (per) mRNA is enhanced at cold temperatures, leading to more rapid daily increases in per transcript levels and earl...

متن کامل

Neural and non‐neural contributions to sexual dimorphism of mid‐day sleep in Drosophila melanogaster: a pilot study

Many of the characteristics associated with mammalian sleep are also observed in Drosophila melanogaster Meigen, making the fruit fly a powerful model organism for studying the genetics of this important process. Included among the similarities is the presence of sexual dimorphic sleep patterns, which, in flies, are manifested as increased mid-day sleep ('siesta') in males compared with females...

متن کامل

Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C.

Drosophila melanogaster locomotor activity responds to different seasonal conditions by thermosensitive regulation of splicing of a 3' intron in the period mRNA transcript. Here we demonstrate that the control of locomotor patterns by this mechanism is primarily light-dependent at low temperatures. At warmer temperatures, when it is vitally important for the fly to avoid midday desiccation, mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012